THERMAL PROCESSES BETWEEN A RIGID WALL AND A STREAM OF HOT GAS

G. A. Surkov and S. D. Skakun UDC 536.2.083

Systems of linearized heat-conduction equations with appropriate initial and
boundary conditions are derived. Based on the solutions of these equations,
a method is presented for determining intense heat fluxes incident on sur-
faces of bodies of finite thickness.

In the design of modern steam generators and shielding articles located in regions of
very large thermal stresses, centralized heat supply systems and central heating systems
(atomic power plants, heat and electric power plants, network substations, heat supply sys—
tems), etc., the problem of determining both steady and unsteady heat fluxes incident on the
surfaces of individual structures is crucial. A more accurate solution of this problem,
i.e., a solution of the nonlinear heat-conduction equation with appropriate boundary condi-
tions, leads to decreased weights and safety factors of individual units and, consequently,
to increased economic efficiency of equipment manufacture.

Currently, three groups of methods for solving nonlinear equations can be distinguished:
1) analytic; 2) numerical; 3) mathematical modeling.

When analytic solutions can be obtained they are to be preferred when they are simple
and can be evaluated with a minimum expenditure of working time.

We present an analytic method for solving nonlinear heat-conduction equations which to
a certain extent meets these requirements.

Suppose it is required to solve the nonlinear heat-conduction equation

%w-+06>§2::7%—U%+x@w%%J<O<x<Rwr>m e
with boundary conditions of the form
Oh—o =0 (R <x<Ry), (2)
Olemr, = ¢1(7) (1>>0), (3)
Blimr, = 92(7) (1> 0), o

where © = t — to, R, is the distance from the point x = 0, R, is the thickness of the plate,
and

1(8) = %o -+ 1,8, , (5)
C(®)=C,+CO (6)

give the temperature dependence of the thermal conductivity and the specific heat, respec-
tively.

If the functions (5) and (6) are inserted under the appropriate derivative signs Egs.
(1)~-(4) can be written as
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are continuous and differentiable, satisfy the Dirichlet conditions [1], and can be expanded
in Fourier series in the interval (0, Op)
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Substituting Eqs. (13) and (14) into (7) and formally applying the reduction rule [2]
reduces Eqs. (7)-(10) to the form
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Tyilx=r, = E—DT ¥, (1),

|
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where

T, = b, sin ’;nne , (21)
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and e is the base of natural logarithms.
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TABLE 1. Values of Coefficients oy (@p = 600°C)

k o & oy L oy k ay

1 0,93434 6 0,89236 11 0,89271 16 0,89236
2 0,89236 7 0,89314 12 0,89236 17 0,89245
3 0,89694 8 0,89236 13 0,89262 18 0,89236
4 0,89236 9 0,89289 14 +0,89236 19 ¢ 0,89244
5 0,89394 10 0,89236 15 l 0,89253 20 } 0,89236

TABLE 2. Temperature Distribution of a Plate as a Function
of Time and Position, °C

R, mm
T, sec l ' ‘
i 2 | 3 i 5
1 1 I

0,01 4,5312 l 0,8120 ! 0,1376 I 0,0013
0,02 17,6043 | 6,2493 ] 1,0182 ! 0.1134
0,03 34,9976 l 15,6937 i 6.3866 | 0,3752
0,04 54,3102 27,8479 ; 13,2755 | 2,3903
0,05 74,2323 | 41,6127 g 22,0037 | 5,1075
0,06 94,0390 l 56,2270 ! 32,0196 | 8,8931
0,07 ; 113,3391 : 71,1849 ; 42,8785 13,6243
0,08 | 131,9357 , 86,1590 | 54,2441 ! 19,1476
0,09 : 149.74606 i 100,9440 : 65,8712 25,3002
0,10 | 166, 7560 ! 115,4163 | 77,5854 i 31,9698
0,11 182 9859 ) 1295073 89,2654 : 39,0094
0,12 198 ,4782 | 143,1841 100, 8293 ' 46,3280
0,13 213,2840 | 156,4372 112,2233 53,8442
0,14 227.,4578 | 159,2715 123,4142 61,4928
0,15 : 241,0525 . 181,7010 134,3831 69,2221
0,16 ' 254,1187 | 193,7444 i 145,1210 76,9915
0,17 ! 266,7029 : 205,4229 l 155,6259 i 84,7697
0.18 | 278 ,8475 ! 216,7586 i 165,9003 92,5324
0,19 ! 290, 5906 I 227,774 175,9498 100,2612
0,20 | 301,9664 238,4881 185,7819 107,9425
0,21 i 313,0051 ! 2489227 195,4051 115,6659
0,22 [ 323,7338 i 259,0956 204,8282 | 123,1240
0,23 I 334,1767 | 269,0239 214,0606 130,6117
0,24 | 34,3551 | 278,7232 i 223,1112 138,0254
0,25 i 354,2881 i 288,2079 I 231,9887 145,3629
0,26 : 363,9927 ; 297,4912 : 240,7017 152,6230
0,27 373,4843 | 306,5852 ‘ 249,2579 159,8053
0,28 382,7765 315,5009 257,6650 166,9099
0,29 391,8817 | 324,2481 | 265,9300 173,9374
0,30 | 400,8110 ’ 332,8363 , 274,0595 180,8886

Thus, we obtain a system of linear equations which is readily solved. Taking the
Laplace transform, the expression for the transform of Ty is

_ ) sh ]/ = (R, — ) sh V/ — x—R)
L= | =" + 142 () == » (23)
o - _ sh //— —
)/ oo R Ry V o R
and after taking the inverse transform and differentiating with respect to x, we find
6Thi 1 1
. —_—— T) — ) —4—— —
T T O R

1 . 2R3 + 2R,R, — R}
~ ¢ =TTV e B, —R)
1 R} —2R,R, — 2R}

e YO G RRY 24)

if we limit ourselves to first-order derivatives of ¥,(t1) and ya(1). It should be noted
that taking account of second derivatives of these functions does not change the result sig-
nificantly since in a short time interval At these functions are commonly taken as linear.
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Fig. 1. Results of reconstruction of heat fluxes: curve 1 by
Eq. (29); 2, 3, 4, 5 by (27) with R; = 1 mm and R; = 5 mm;

R; = 2 mm and Rz = 5mm; R; = 1 mm and Rz = 3 mm; R; = 3 mm and
Rz = 5 mm, respectively. q, kW/cm?®; T, sec.

In most experimental studies, detectors for sensing heat fluxes are made of copper, for
which Eqs. (5) and (6) have the form

A (8) = 390 — 0.06176, (25)
¢(8) = 387 + 0.08708. (26)

Using the data in Table 1 the values of ay for 6, = 600°C were determined. This value
of 6, was taken as the maximum temperature at any point x in the time interval under con-
sideration. This ensures the convergence of the Fourier series to the functions expanded.
Table 1 shows that «;, = 0.93434 differs from all the other values of ayx by about 5%, and
they in turn differ so slightly from one another that their average ay = 0.89280 can be taken
for all k > 1. This procedure eliminates the summation over k and makes it possible to write
the expression for the heat fluxes in the form

1
RZ—RI

e 2RS + 2R,R, — R} ( 1, e—1 ) .
A bae(R,— R)) a, | o k

. R§—2R2Rl——2R?( 1 e—1 )]
() 6ase (R, — R)) @ + &y ’ @1

-

901 = [(wl () — % (0)

The calculation of heat fluxes by Eq. (27) requires the values of the functions y,(t),
va(t), v:'(t), and Y.' (1), which are ordinarily taken from experiment. However, another
method can be used. In the present paper we solve the nonlinear heat-conduction equation
(1) numerically with boundary conditions of the form

Ohi—o =0, (28)
08 " .
(o +28) ——| =—g(l—e™), (29)
X |x=0
8|x=R = 0. (30)

In Eq. (29) we set qo = 3¢107 W/m® and 6§ = 31.54 sec™ !, which corresponds most closely
to experimental conditions [3]. .

Table 2 gives the calculated temperature distribution for a copper plate of thickness
R =50 mm. By using this table, boundary conditions (3) and (4) can be chosen for various
values of R, and R; to solve the inverse problem of determining heat fluxes. If the results
obtained by Eq. (27) are close to the conditions (29), the proposed method is accurate and
can be used to calculate heat fluxes.
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Figure 1 shows the results of such a reconstruction of heat fluxes using Eq. (27).

Curve 4, calculated for Ry * 1 mm and R; = 3 mm, measured from the surface of the plate

x = 0, practically coincides with the reference curve 1 constructed by using Eq. (29). The
agreement at early times is somewhat worse for curves 2, 3, and 5 calculated with R; = 1 mm
and Rz = 5 mm, Ry = 2 mm and R = 5 mm, and Ry = 3 mm and R, = 5 mm, respectively. It is
clear that this can account for the less accurate approximation of the temperature distribu-
tion at x = 0, For t > 0.1 sec, however, all the results are close, and the proposed method
of calculating heat fluxes can be used in practice. ’

NOTATION

p, density, kg/m®; C, specific heat, J/kg+°C; T, time, sec; A, thermal conductivity,
W/me°C; x, running coordinate, m; t, temperature, °C; to, initial temperature, °C; do,
thermal diffusivity, m®/sec; q, heat flux, W/mZ.
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PROPAGATION OF HEAT WITH A VARIABLE RELAXATION PERIOD
P. V. Cherpakov UDC 532.24.02

We present an exact solution of the hyperbolic heat-conduction equation for a
variable velocity of heat transport.

According to the hypothesis of the finite velocity of heat transport developed by Lykov
[1] we have a hyperbolic heat-conduction equation

0%u ou d%u
; 2 , (1)
or T o T o

where ty is the relaxation period in hours, g® is the thermal diffusivity, and wq = Va’/tr
is the velocity of propagation of heat.

If ty and a® are constants, wq is a finite velocity. Under these assumptions we solve
certain problems related to Eq. (1) which can be found in [2-4].

Norwood [5] investigated variable values of t,, and Samarskii and Sobol' [6] used a
computer to study temperature waves,

We assume that ty varies linearly with the time. This case leads to an exact solution
of Eq. (1) for many boundary-value problems.

N We set
t, =2t b, (2)

where b is a positive constant. Then the substitution £® = 2t + b reduces Eq. (1) to the
familiar form
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